Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nodal s± pairing symmetry in an iron-based superconductor with only hole pockets

Abstract

The origin of high-temperature superconductivity in iron-based superconductors is still not understood; determination of the pairing symmetry is essential for understanding the superconductivity mechanism. In the iron-based superconductors that have hole pockets around the Brillouin zone centre and electron pockets around the zone corners, the pairing symmetry is generally considered to be s±, which indicates a sign change in the superconducting gap between the hole and electron pockets. For the iron-based superconductors with only hole pockets, however, a couple of pairing scenarios have been proposed, but the exact symmetry is still controversial. Here we determine that the pairing symmetry in KFe2As2—which is a prototypical iron-based superconductor with hole pockets both around the zone centre and around the zone corners—is also of the s± type. Our laser-based angle-resolved photoemission measurements have determined the superconducting gap distribution and identified the locations of the gap nodes on all the Fermi surfaces around the zone centres and the zone corners. These results unify the pairing symmetry in hole-doped iron-based superconductors and point to spin fluctuation as the pairing glue in generating superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fermi surface and band structures of KFe2As2 measured at 0.9 K.
Fig. 2: Superconducting gap opening along different Fermi surface sheets by measuring photoemission spectra in the normal and superconducting states.
Fig. 3: Detailed analysis of the ε band in the superconducting state.
Fig. 4: Momentum-dependent superconducting gaps along all the Fermi surface sheets of KFe2As2.
Fig. 5: Gap symmetry of KFe2As2.

Similar content being viewed by others

Data availability

All raw data generated during the study are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

The codes used for the fitting and simulation process in this study are available from the corresponding authors upon request.

References

  1. Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  2. Wang, F. & Lee, D. H. The electron-pairing mechanism of iron-based superconductors. Science 332, 200–204 (2011).

    Article  ADS  Google Scholar 

  3. Hosono, H. & Kuroki, K. Iron-based superconductors: current status of materials and pairing mechanism. Phys. C. 514, 399–422 (2015).

    Article  ADS  Google Scholar 

  4. Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).

    Article  ADS  Google Scholar 

  5. Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx. Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  6. Kuroki, K. et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx. Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

  7. Si, Q. & Abrahams, E. Strong correlations and magnetic frustration in the high Tc iron pnictides. Phys. Rev. Lett. 101, 076401 (2008).

    Article  ADS  Google Scholar 

  8. Seo, K., Bernevig, B. A. & Hu, J. Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).

    Article  ADS  Google Scholar 

  9. Zhang, Y. et al. Nodeless superconducting gap in AxFe2Se2 (A = K,Cs) revealed by angle-resolved photoemission spectroscopy. Nat. Mater. 10, 273–277 (2011).

    Article  ADS  Google Scholar 

  10. Qian, T. et al. Absence of a holelike Fermi surface for the iron-based K0.8F1.7Se2 superconductor revealed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 106, 187001 (2011).

    Article  ADS  Google Scholar 

  11. Mou, D. et al. Distinct Fermi surface topology and nodeless superconducting gap in a (Tl0.58Rb0.42)Fe1.72Se2 superconductor. Phys. Rev. Lett. 106, 107001 (2011).

    Article  ADS  Google Scholar 

  12. Liu, D. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat. Commun. 3, 931 (2012).

    Article  ADS  Google Scholar 

  13. Zhao, L. et al. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films. Nat. Commun. 7, 10608 (2016).

    Article  ADS  Google Scholar 

  14. Maier, T. A., Graser, S., Hirschfeld, P. J. & Scalapino, D. J. d-wave pairing from spin fluctuations in the KxFe2−ySe2 superconductors. Phys. Rev. B 83, 100515 (2011).

    Article  ADS  Google Scholar 

  15. Wang, F. et al. The electron pairing of KxFe2−ySe2. Europhys. Lett. 93, 57003 (2011).

    Article  ADS  Google Scholar 

  16. Khodas, M. & Chubukov, A. V. Interpocket pairing and gap symmetry in Fe-based superconductors with only electron pockets. Phys. Rev. Lett. 108, 247003 (2012).

    Article  ADS  Google Scholar 

  17. Fukazawa, H. et al. Possible multiple gap superconductivity with line nodes in heavily hole-doped superconductor KFe2As2 studied by 75As nuclear quadrupole resonance and specific heat. J. Phys. Soc. Japan 78, 083712 (2009).

    Article  ADS  Google Scholar 

  18. Dong, J. K. et al. Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2. Phys. Rev. Lett. 104, 087005 (2010).

    Article  ADS  Google Scholar 

  19. Hashimoto, K. et al. Evidence for superconducting gap nodes in the zone-centered hole bands of KFe2As2 from magnetic penetration-depth measurements. Phys. Rev. B 82, 014526 (2010).

    Article  ADS  Google Scholar 

  20. Reid, J. P. et al. Universal heat conduction in the iron arsenide superconductor KFe2As2: evidence of a d-wave state. Phys. Rev. Lett. 109, 087001 (2012).

    Article  ADS  Google Scholar 

  21. Okazaki, K. et al. Octet-line node structure of superconducting order parameter in KFe2As2. Science 337, 1314–1317 (2012).

    Article  ADS  Google Scholar 

  22. Xu, N. et al. Possible nodal superconducting gap and Lifshitz transition in heavily hole-doped Ba0.1K0.9Fe2As2. Phys. Rev. B 88, 220508 (2013).

    Article  ADS  Google Scholar 

  23. Watanabe, D. et al. Doping evolution of the quasiparticle excitations in heavily hole-doped Ba1−xKxFe2As2: a possible superconducting gap with sign-reversal between hole pockets. Phys. Rev. B 89, 115112 (2014).

    Article  ADS  Google Scholar 

  24. Kyuil, C. et al. Energy gap evolution across the superconductivity dome in single crystals of (Ba1−xKx)Fe2As2. Sci. Adv. 2, e1600807 (2016).

    Article  ADS  Google Scholar 

  25. Hardy, F. et al. Strong correlations, strong coupling, and s-wave superconductivity in hole-doped BaFe2As2 single crystals. Phys. Rev. B 94, 205113 (2016).

    Article  ADS  Google Scholar 

  26. Thomale, R., Platt, C., Hanke, W., Hu, J. & Bernevig, B. A. Exotic d-wave superconducting state of strongly hole-doped KxBa1−xFe2As2. Phys. Rev. Lett. 107, 117001 (2011).

    Article  ADS  Google Scholar 

  27. Maiti, S., Korshunov, M. M. & Chubukov, A. V. Gap symmetry in KFe2As2 and the \(\cos\)4θ gap component in LiFeAs. Phys. Rev. B 85, 014511 (2012).

    Article  ADS  Google Scholar 

  28. Suzuki, K., Usui, H. & Kuroki, K. Spin fluctuations and unconventional pairing in KFe2As2. Phys. Rev. B 84, 144514 (2011).

    Article  ADS  Google Scholar 

  29. Tafti, F. F. et al. Sudden reversal in the pressure dependence of Tc in the iron-based superconductor KFe2As2. Nat. Phys. 9, 349–352 (2013).

    Article  Google Scholar 

  30. Grinenko, V. et al. Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state. Nat. Phys. 16, 789–794 (2020).

    Article  Google Scholar 

  31. Shen, S. et al. Neutron spin resonance in the heavily hole-doped KFe2As2 superconductor. Phys. Rev. Lett. 124, 017001 (2020).

    Article  ADS  Google Scholar 

  32. Sato, T. et al. Band structure and Fermi surface of an extremely overdoped iron-based superconductor KFe2As2. Phys. Rev. Lett. 103, 047002 (2009).

    Article  ADS  Google Scholar 

  33. Terashima, T. et al. Fermi surface in KFe2As2 determined via de Haas-van Alphen oscillation measurements. Phys. Rev. B 87, 224512 (2013).

    Article  ADS  Google Scholar 

  34. Yoshida, T. et al. Orbital character and electron correlation effects on two- and three-dimensional Fermi surfaces in KFe2As2 revealed by angle-resolved photoemission spectroscopy. Front. Phys. 2, 17 (2014).

    Article  Google Scholar 

  35. Terashima, T. et al. Fermi surface and mass enhancement in KFe2As2 from de Haas-van Alphen effect measurements. J. Phys. Soc. Japan 79, 053702 (2010).

    Article  ADS  Google Scholar 

  36. Kim, J. S., Kim, E. G., Stewart, G. R., Chen, X. H. & Wang, X. F. Specific heat in KFe2As2 in zero and applied magnetic field. Phys. Rev. B 83, 172502 (2011).

    Article  ADS  Google Scholar 

  37. Abdel-Hafiez, M. et al. Specific heat and upper critical fields in KFe2As2 single crystals. Phys. Rev. B 85, 134533 (2012).

    Article  ADS  Google Scholar 

  38. Hardy, F. et al. Evidence of strong correlations and coherence-incoherence crossover in the iron pnictide superconductor KFe2As2. Phys. Rev. Lett. 111, 027002 (2013).

    Article  ADS  Google Scholar 

  39. Eilers, F. et al. Strain-driven approach to quantum criticality in AFe2As2 with A = K, Rb, and Cs. Phys. Rev. Lett. 116, 237003 (2016).

    Article  ADS  Google Scholar 

  40. Wu, Y. P. et al. Emergent Kondo lattice behavior in iron-based superconductors AFe2As2 (A = K, Rb, Cs). Phys. Rev. Lett. 116, 147001 (2016).

    Article  ADS  Google Scholar 

  41. de’ Medici, L., Giovannetti, G. & Capone, M. Selective Mott physics as a key to iron superconductors. Phys. Rev. Lett. 112, 177001 (2014).

    Article  ADS  Google Scholar 

  42. Zhou, X. et al. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. Rep. Prog. Phys. 81, 062101 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  43. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, 4 (1998).

    Article  Google Scholar 

  44. Tamai, A. et al. Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 104, 097002 (2010).

    Article  ADS  Google Scholar 

  45. Castellan, J. P. et al. Effect of Fermi surface nesting on resonant spin excitations in Ba1−xKxFe2As2. Phys. Rev. Lett. 107, 177003 (2011).

    Article  ADS  Google Scholar 

  46. Lee, C. H. et al. Suppression of spin-exciton state in hole overdoped iron-based superconductors. Sci. Rep. 6, 23424 (2016).

    Article  ADS  Google Scholar 

  47. Yu, G., Li, Y., Motoyama, E. M. & Greven, M. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nat. Phys. 5, 873–875 (2009).

    Article  Google Scholar 

  48. Wang, F., Zhai, H., Ran, Y., Vishwanath, A. & Lee, D. H. Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAs-based high-temperature superconductor. Phys. Rev. Lett. 102, 047005 (2009).

    Article  ADS  Google Scholar 

  49. Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).

    Article  ADS  Google Scholar 

  50. Lee, C. H. et al. Incommensurate spin fluctuations in hole-overdoped superconductor KFe2As2. Phys. Rev. Lett. 106, 067003 (2011).

    Article  ADS  Google Scholar 

  51. Horigane, K. et al. Spin excitations in hole-overdoped iron-based superconductors. Sci. Rep. 6, 33303 (2016).

    Article  ADS  Google Scholar 

  52. Platt, C., Li, G., Fink, M., Hanke, W. & Thomale, R. Evolution of superconducting gap anisotropy in hole-doped 122 iron pnictides. Phys. Status Solidi B 254, 1600350 (2017).

    Article  ADS  Google Scholar 

  53. Bang, Y. A shadow gap in the over-doped (Ba1−xKx)Fe2As2 compound. New J. Phys. 16, 023029 (2014).

    Article  ADS  Google Scholar 

  54. Maiti, S., Korshunov, M. M., Maier, T. A., Hirschfeld, P. J. & Chubukov, A. V. Evolution of the superconducting state of Fe-based compounds with doping. Phys. Rev. Lett. 107, 147002 (2011).

    Article  ADS  Google Scholar 

  55. Hu, J. & Ding, H. Local antiferromagnetic exchange and collaborative fermi surface as key ingredients of high temperature superconductors. Sci. Rep. 2, 381 (2012).

    Article  ADS  Google Scholar 

  56. Kihou, K. et al. Single-crystal growth of Ba1−xKxFe2As2 by KAs self-flux method. J. Phys. Soc. Japan 85, 034718 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by: the National Key Research and Development Program of China (grant nos. 2021YFA1401800 (to X.J.Z.), 2017YFA0302900 (to H.Q.M.), 2018YFA0704200 (to H.Q.M.), 2018YFA0305600 (to G.D.L.), 2019YFA0308000 (to H.Q.M.) and 2022YFA1604203 (to L.Z.)); the National Natural Science Foundation of China (grant nos. 11888101 (to X.J.Z.), 11922414 (to L.Z.) and 11974404 (to G.D.L.)); the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (grant nos. XDB25000000 (to X.J.Z.) and XDB33000000 (to H.Q.M.)); the Innovation Program for Quantum Science and Technology (grant no. 2021ZD0301800 (to X.J.Z.)); the Youth Innovation Promotion Association of CAS (grant nos. Y2021006 (to L.Z.) and Y202001 (to H.Q.L.)); and the Synergetic Extreme Condition User Facility (SECUF) (to X.J.Z.). We thank the MAX IV Laboratory for time on Beamline Bloch under Proposal 20221180. Research conducted at MAX IV, a Swedish national user facility, was supported by the Swedish Research council under contract 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-04969 and Formas under contract 2019-02496. We thank C. Polley and B. Thiagarajan at Beamline Bloch of MAX IV for supporting the beamtime.

Author information

Authors and Affiliations

Authors

Contributions

X.J.Z., L.Z. and D.S.W. proposed and designed the research. D.S.W., W.S.H., Y.J.S., H.Q.L. and S.L.L. contributed to the sample growth and the magnetic and resistivity measurements. J.J.J., J.G.Y., H.T.Y., H.T.R., P.A., X.Z., C.H.Y., T.M.M., C.L.L., S.J.Z., F.F.Z., F.Y., Z.M.W., N.Z., L.J.L., R.K.L., X.Y.W., Q.J.P., H.Q.M., G.D.L., Z.Y.X., L.Z. and X.J.Z. contributed to the development and maintenance of the ARPES systems and related software development. D.S.W. carried out the ARPES experiment with J.J.J., J.G.Y., J.Y.L., H.K.C., Y.H.Y., C.P., Y.L.C., L.Z. and X.J.Z. D.S.W., L.Z. and X.J.Z. analysed the data. X.X.W. contributed to the band structure calculations. X.J.Z., L.Z. and D.S.W. wrote the paper. All authors participated in discussion and commented on the paper.

Corresponding authors

Correspondence to Lin Zhao or X. J. Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Discussion and Tables 1–3.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Jia, J., Yang, J. et al. Nodal s± pairing symmetry in an iron-based superconductor with only hole pockets. Nat. Phys. 20, 571–578 (2024). https://doi.org/10.1038/s41567-023-02348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02348-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing